# Chapter 10 Probability

- 10.1 Sample Spaces and Probability
- 10.2 Independent and Dependent Events
- 10.3 Two-Way Tables and Probability
- 10.4 Probability of Disjoint and Overlapping Events
- 10.5 Permutations and Combinations
- 10.6 Binomial Distributions



#### **Two-way Table**

1 of 8

- The Venn diagram shows the results of a survey of 80 students. Using the information in the diagram, fill in the table below.
- Using the table, how many students speak a foreign language?
- How many do not play an instrument?



|                                    | Play an Instrument | Do Not Play an Instrument | Total |
|------------------------------------|--------------------|---------------------------|-------|
| Speak a Foreign<br>Language        |                    |                           |       |
| Do Not Speak a<br>Foreign Language |                    |                           |       |
| Total                              |                    |                           |       |

## Vocabulary

2 of 8

- Two-way table A frequency table that displays data collected from one source that belong to two different categories.
- Joint frequency Each entry in the table.

| Frequency |       | lency \ | Attendance |               |    |     |
|-----------|-------|---------|------------|---------------|----|-----|
|           |       |         | Attending  | Not Attending | То | tal |
|           | Class | Junior  | 42         | 64            | 10 | )6  |
|           | Ü     | Senior  | 77         | 37            | 11 | 4   |
|           |       | Total   | 119        | 101           | 22 | 20  |

## Vocabulary

3 of 8

 Joint relative frequency - The ratio of a joint frequency (one entry) to the total number.



## Vocabulary

4 of 8

- Joint relative frequency The ratio of a joint frequency (one entry) to the total number.
- Marginal relative frequency - The sum of the joint frequencies in a row or column.

| 42  | 64       | About 48.2% of the             |
|-----|----------|--------------------------------|
| 220 | $+{220}$ | students surveyed were Juniors |
|     |          |                                |

|       |        | Atte                           |                                |       |
|-------|--------|--------------------------------|--------------------------------|-------|
|       |        | Attending                      | Not Attending                  | Total |
| Class | Junior | $\frac{42}{220} \approx 0.191$ | $\frac{64}{220} \approx 0.291$ | 0.482 |
| Cl    | Senior | $\frac{77}{220} = 0.35$        | $\frac{37}{220} \approx 0.168$ | 0.518 |
|       | Total  | 0.541                          | 0.459                          | 1     |

## Vocabulary

5 of 8

 Conditional relative frequencies - The ratio of the marginal frequency (one entry) over the total in each row or column.

| oolanni. |        | Attendance                          |                                     |
|----------|--------|-------------------------------------|-------------------------------------|
|          |        | Attending                           | Not Attending                       |
| SS       | Junior | $\frac{0.191}{0.482} \approx 0.396$ | $\frac{0.291}{0.482} \approx 0.604$ |
| Class    | Senior | $\frac{0.35}{0.518} \approx 0.676$  | $\frac{0.168}{0.518} \approx 0.324$ |

Given that a student is a Junior, the conditional relative probability that he/she is not attending is about 60.4%.

|       |        | Attending                      | Not Attending                  | Total |
|-------|--------|--------------------------------|--------------------------------|-------|
| Class | Junior | $\frac{42}{220} \approx 0.191$ | $\frac{64}{220} \approx 0.291$ | 0.482 |
| Ü     | Senior | $\frac{77}{220} = 0.35$        | $\frac{37}{220} \approx 0.168$ | 0.518 |
|       | Total  | 0.541                          | 0.459                          | 1     |

Attendance



#### **Finding Conditional Probabilities**

6 of 8

A satellite TV provider surveys customers in three cities. The survey asks whether they would recommend the TV provider to a friend. The results, given as joint relative frequencies, are shown in the two-way table.

|          |     | Location |              |            |
|----------|-----|----------|--------------|------------|
|          |     | Glendale | Santa Monica | Long Beach |
| onse     | Yes | 0.29     | 0.27         | 0.32       |
| Response | No  | 0.05     | 0.03         | 0.04       |

a) What is the probability that a randomly selected customer who is located in **Glendale** will **recommend** the provider?

P(response yes | Glendale) = 
$$\frac{0.29}{0.29 + 0.05} = 85.3\%$$

#### **Finding Conditional Probabilities**

7 of 8

A satellite TV provider surveys customers in three cities. The survey asks whether they would recommend the TV provider to a friend. The results, given as joint relative frequencies, are shown in the two-way table.

| Location |     |          |              |            |
|----------|-----|----------|--------------|------------|
|          |     | Glendale | Santa Monica | Long Beach |
| onse     | Yes | 0.29     | 0.27         | 0.32       |
| Response | No  | 0.05     | 0.03         | 0.04       |

- a) What is the probability that a randomly selected customer who is located in **Glendale** will **recommend** the provider?
- b) What is the probability that a randomly selected customer who will **not** recommend the provider is located in **Long Beach**?

P(Long Beach | response no) = 
$$\frac{0.04}{0.05 + 0.03 + 0.04} = 33.3\%$$

### **Finding Conditional Probabilities**

8 of 8

A satellite TV provider surveys customers in three cities. The survey asks whether they would recommend the TV provider to a friend. The results, given as joint relative frequencies, are shown in the two-way table.

| Location |     |          |              |            |
|----------|-----|----------|--------------|------------|
|          |     | Glendale | Santa Monica | Long Beach |
| onse     | Yes | 0.29     | 0.27         | 0.32       |
| Response | No  | 0.05     | 0.03         | 0.04       |

c) Determine whether recommending the provider to a friend in Long Beach and living in Long Beach given recommending are independent events?

P(Long Beach) = 
$$\frac{0.32 + 0.04}{1} = 36\%$$

P(Long Beach | response yes) = 
$$\frac{0.32}{0.29+0.27+0.32}$$
 = 36.36%

Approximately equal means INDEPENDENT!!!!

